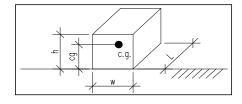
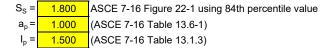
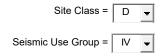

Project: TORUS page: 1 of 2


Date: 08/16/23 Engineer: BMH

RBI TORUS 0400 INDOOR - SEISMIC ANCHORAGE (ASCE 7-16/IBC 2000)


Slab on Grade Applications Only


Equipment Parameters:

Seismic Parameters:

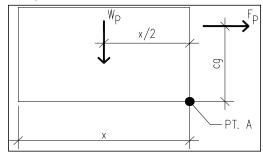
$R_p =$	1.500	(Default value for Anchorage per ASCE 7-16 13.6-1)
F _a =	1.032	(ASCE 7-16 Table 11.4-1)
$S_{MS} = F_a * S_s =$	1.858	(ASCE 7-16 Eqn. 11.4-1)
S _{DS} =2/3*S _{MS} =	1.239	(ASCE 7-16 Eqn. 11.4-3)

Seismic Design Category = D

Seismic Force:

Project: TORUS page: 2 of 2

Date: 08/16/23 Engineer: BMH


RBI TORUS 0400 INDOOR - SEISMIC ANCHORAGE (ASCE 7-16/IBC 2000)

Design Anchorage Force:

Horizontal Shear Force Per Anchor:

$$R_H = F_p/4 = 52.3$$
 LBS.

Overturning Resistance About Point A:

x = 40.25 in. x = lesser of L or h

$$M_{OT} = F_p * cg =$$
 3566.9 LBS.-FT.

$$M_{RES} = W_{p}^{*}x/2 = \boxed{7551.7}$$
 LBS.-FT. **OK, No Uplift**

Vertical Acceleration:

assume
$$\rho$$
 = 1.0

Ev =
$$\rho^*$$
Fp + 0.2*S_{DS}*W = **145.3** LBS. (IBC Eqn. 1617.1.1)

$$R_{VNETUP} = (M_{OT}/(2*x))-(W_p/4)+(Ev/4) =$$
 LBS. No Uplfit

Force Summary Per Corner:

Component Anchorage:

$$R_{HNET} =$$
 52.3 LBS.
 $R_{VNETUP} =$ **0.0** LBS.

Anchors Embedded in Concrete or CMU:

$$1.3*R_p*R_{HNET} =$$
 102.0 LBS. (IBC 1617.1.7 #2)
 $1.3*R_p*R_{VNETUP} =$ **0.0** LBS. (IBC 1617.1.7 #2)