Date: 08/16/23
Engineer: BMH

RBI TORUS 0400 INDOOR - SEISMIC ANCHORAGE (ASCE 7-16/IBC 2000)

Slab on Grade Applications Only

Equipment Parameters:

weight, $\mathrm{W}_{\mathrm{p}}=$	375.24
w =	25.09
$\mathrm{L}=$	40.25
$\mathrm{h}=$	40.94
$\mathrm{cg}=$	17.05

Seismic Parameters:

$\mathrm{S}_{\text {S }}$	1.800	CE 7-16 Figure 22-1 usin
a_{p}	1.000	SCE 7-16 Table 13.6-1)
$\mathrm{I}_{\mathrm{p}}=$	1.500	(ASCE 7-16 Table 13.1.3)

Site Class	$=\mathrm{D}$
Seismic Use Group	$=\mathrm{IV}$

| R_{p} | $=\mathbf{1 . 5 0 0}$ | (Default value for Anchorage per ASCE 7-16 13.6-1) |
| ---: | :--- | ---: | :--- |
| F_{a} | $=\mathbf{1 . 0 3 2}$ (ASCE 7-16 Table 11.4-1) | |
| $\mathrm{S}_{\mathrm{MS}}=\mathrm{F}_{\mathrm{a}}{ }^{*} \mathrm{~S}_{\mathrm{s}}$ | $=\mathbf{1 . 8 5 8} \quad$ (ASCE 7-16 Eqn. 11.4-1) | |
| $\mathrm{S}_{\mathrm{DS}}=2 / 3^{*} \mathrm{~S}_{\mathrm{MS}}$ | $=\mathbf{1 . 2 3 9} \quad$ (ASCE 7-16 Eqn. 11.4-3) | |

Seismic Design Category = \qquad
Seismic Force:

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{p}}=\left(0.4^{*} \mathrm{a}_{\mathrm{p}}{ }^{*} \mathrm{~S}_{\mathrm{DS}}{ }^{*} \mathrm{~W}_{\mathrm{p}}\right) /\left(\mathrm{R}_{\mathrm{p}} / I_{\mathrm{p}}\right)=\mathbf{1 8 6 . 0} \\
& \text { LBS. (ASCE 7-16 Eqn. 13.3-1) } \\
& \text { Upper Limit: } \mathrm{F}_{\mathrm{pMAX}}=1.6^{*} \mathrm{~S}_{\mathrm{DS}} \mathrm{I}_{\mathrm{p}}{ }^{*} \mathrm{~W}_{\mathrm{p}}= \mathbf{1 1 1 5 . 8} \text { LBS. (ASCE 7-16 Eqn. 13.3-2) } \\
& \text { Lower Bound: } \mathrm{F}_{\mathrm{pMIN}}=0.3^{*} \mathrm{~S}_{\mathrm{DS}}{ }^{*} \mathrm{I}_{\mathrm{p}}{ }^{*} \mathrm{~W}_{\mathrm{p}}= \mathbf{2 0 9 . 2} \\
& \text { LBS. (ASCE 7-16 Eqn. 13.3-3) }
\end{aligned}
$$

$$
\mathrm{F}_{\mathrm{p}, \mathrm{DESIGN}}=209.2 \mathrm{LBS} .
$$

Project:	TORUS	page: 2 of 2
Date:	$\frac{08 / 16 / 23}{}$	

RBI TORUS 0400 INDOOR - SEISMIC ANCHORAGE (ASCE 7-16/IBC 2000)

Design Anchorage Force:
Horizontal Shear Force Per Anchor:

$$
\mathrm{R}_{\mathrm{H}}=\mathrm{F}_{\mathrm{p}} / 4=\mathbf{5 2 . 3} \mathrm{LBS} .
$$

Overturning Resistance About Point A:

$M_{\text {OT }}=F_{\mathrm{p}}{ }^{*} \mathrm{cg}=3566.9$ LBS.-FT.
$M_{\text {RES }}=W_{p}{ }^{*} \times / 2=7551.7$ LBS.-FT. OK, No Uplift
assume $\rho=1.0$
$E v=\rho^{*} F p+0.2^{*} S_{D s}{ }^{*} W=145.3$ LBS. (IBC Eqn. 1617.1.1)
$R_{\text {VNETUP }}=\left(M_{\text {OT }} /\left(2^{*} x\right)\right)-\left(W_{p} / 4\right)+(E v / 4)=0.0$ LBS. No Uplfit

Force Summary Per Corner:
Component Anchorage:

$R_{\text {HNET }}$	$=\mathbf{5 2 . 3}$ LBS.
$R_{\text {VNETUP }}$	$=\mathbf{0 . 0}$ LBS.

Anchors Embedded in Concrete or CMU:

$1.3^{*} R_{p}{ }^{*} R_{\text {HNET }}$	$=\mathbf{1 0 2 . 0}$ LBS. (IBC 1617.1.7 \#2)
$1.3^{*} R_{p}{ }^{*} R_{\text {VNETUP }}$	$=\mathbf{0 . 0}$ LBS. (IBC 1617.1.7 \#2)

